User Profiling and Precision Marketing in E-commerce Platforms and Reseller Websites: A Spreadsheet-based Approach
2025-04-27
Abstract:
1. Data Collection Framework
1.1 Multi-source Data Aggregation
- Platforms Covered:
- Data Types:
- Demographics (Age/Gender/Location)
- Behavioral Metrics (Browsing paths, Cart additions)
- Transactional Patterns (Purchase frequency, AOV)
Data Category | Example Fields | Collection Method |
---|---|---|
Identity Data | User tier, Registration date | API integration |
Behavioral Data | Clickstream, Dwell time | Tracking pixels |
Commercial Data | RFM scores, Coupon usage | Order export |
2. Spreadsheet-based User Profiling
2.1 Google Sheets Implementation
The workflow implements:
=QUERY(IMPORTRANGE("spreadsheet_key","SELECT Col1,Col2 WHERE Col3>'2023-01-01'")
Automated Profile Building:
k-means Clustering: Apriori Algorithm: Predictive Scoring:

3. Precision Marketing Applications
3.1 Personalization Strategies
- +28%
- -37%
- 19X
Cosmetics Sales Campaign
Implemented profile-triggered discounts:
=IF(AND(SkinCare_Interest>80, LastPurchase<30), "15%_Cream", "5%_General")
Key Finding: Spreadsheet-based models achieved 92% accuracy
4. Implementation Recommendations
- Maintain GDPR-compliant data lakes
- Schedule weekly #DataRefresh
- Combine with
MAPE
5. Code Snippets for Segment Export
function exportHighValueUsers() { const sheet = SpreadsheetApp.openById('ABC123'); // ...segmentation logic... }